طور علماء في جامعة كاليفورنيا في سان دييغو خوارزمية للتعلم الآلي لمحاكاة التجارب البحثية الكيميائية المستهلكة للوقت التي تحدث في بداية اكتشاف الأدوية، والتي يمكن أن تبسط العملية بشكل كبير وتفتح الأبواب لعلاجات للسرطان لم يسبق لها مثيل.
أجرى الدراسة باحثون من جامعة كاليفورنيا في سان دييجو في الولايات المتحدة الأميركية، ونشرت في السادس من ماي 2024 في مجلة “نيتشر كومينكيشن” وكتب عنها موقع “يوريك ألرت”.
وتجرى آلاف التجارب لتحسين الأدوية المرشحة لتصبح علاجات، ويمكن لمنصة الذكاء الاصطناعي الجديدة أن تعطي نفس النتائج في وقت أقصر.
واستخدم الباحثون الأداة الجديدة، لتصميم 32 عقارا مرشحا جديدا لعلاج السرطان.
وتعد هذه التكنولوجيا جزءا من اتجاه جديد، ولكنه متنامٍ في العلوم الصيدلانية لاستخدام الذكاء الاصطناعي لتحسين عملية اكتشاف الأدوية وتطويرها.
وقال المؤلف الرئيسي البروفيسور تري إيديكر، الأستاذ في قسم الطب الباطني في كلية الطب بجامعة كاليفورنيا في سان دييغو والأستاذ المساعد في الهندسة الحيوية وعلوم الحاسوب في كلية جاكوبس للهندسة بجامعة كاليفورنيا في سان دييغو: “لقد أصبح اكتشاف الأدوية الموجه بالذكاء الاصطناعي مجالا نشطا للغاية في الصناعة، ولكن على عكس الأساليب التي يتم تطويرها في الشركات، فإننا نجعل تقنيتنا مفتوحة المصدر ومتاحة لأي شخص يريد استخدامها”.
وتعد المنصة الجديدة، والتي تسمى “بوليغون” ، منصة فريدة من نوعها بين أدوات الذكاء الاصطناعي المصممة لاكتشاف الأدوية حيث يمكنها تحديد الجزيئات التي تستهدف بروتينات متعددة، في حين أن بروتوكولات اكتشاف الأدوية الحالية تعطي الأولوية حاليا للعلاجات التي تعمل على هدف واحد.
وتحظى الأدوية متعددة الأهداف باهتمام كبير بالنسبة للأطباء والعلماء بسبب قدرتها على تقديم نفس الفوائد التي يحققها العلاج المركب من أكثر من دواء.