كشفت دراسة حديثة من جامعة أكسفورد، أن الدماغ البشري يعتمد على عمليات تعلم واكتساب معرفي مختلفة جذريا وأكثر كفاءة مقارنة بأنظمة وآليات الذكاء الاصطناعي الحالية. وهو ما يخالف الاعتقاد السائد بأنّ قدرة الذكاء الاصطناعي على التعلّم تفوق قدرة البشر.
تستخدم معظم أنظمة الذكاء الاصطناعي المعاصرة -بما في ذلك تلك التي تحتوي على شبكات عصبية اصطناعية تشبه الدماغ البشري- عملية تسمى الانتشار العكسي (المُرتد). وهي إحدى طرق تعليم الشبكات العصبونية الاصطناعية بالانتشار العكسي للاتجاه الأصلي لقدوم المعلومات. وتتضمن العملية بذلك ضبط الأوزان. والروابط بين الخلايا العصبية عند وقوع أي خطأ. وبالتالي ضبط عملية اتخاذ القرار حتى الحصول على الإجابة الصحيحة.
وبذلك فإن الدماغ البشري قادر على التعلم من الرؤية الأولى. بينما يحتاج الذكاء الاصطناعي إلى التدريب والتدرب مئات المرات على المعلومة نفسها كي يحصل على نتيجة صحيحة، إضافة إلى أن قدرة الإنسان على التعلم لا تستوجب قاعدة بيانات مسبقة. على عكس الذكاء الاصطناعي.
وتشير الدراسة التي تحمل عنوان “دراسة النشاط العصبي قبل التشكل كأساس للتعلم بعيدا عن خوارزمية الانتشار العكسي”. إلى أن الدماغ البشري يتفوق على الذكاء الاصطناعي بطرق مختلفة. فعلى الرغم من أن الذكاء الاصطناعي قد يتفوق على البشر في مهام محددة، فإنه يتطلب مئات أوآلاف عمليات التدريب للتعلم. على عكس البشر الذين يمكنهم التعلم من تجربة واحدة بغض النظر عن المخزون المعرفي الموجود.
ويقترح الباحثون طريقة تعلم بديلة تسمى “التكوين المستقبلي”، إذ عوضا عن تعديل الروابط العصبية، يتغير نشاط الخلايا العصبية للتنبؤ بالنتائج بشكل أفضل، ثم تُجرى التعديلات على “الأوزان” والروابط لتتناسب مع النمط الجديد.
وأظهرت عمليات المحاكاة الحاسوبية أن النماذج التي تستخدم تقنية التكوين المستقبلي. يمكن أن تتعلم بكفاءة أكبر من الشبكات العصبية التقليدية للذكاء الاصطناعي، خاصة بالنسبة للمهام ذات الصلة بالكائنات الحيّة.